Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Neurosci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689142

RESUMO

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.

2.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532024

RESUMO

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adolescente , Masculino , Feminino , Adulto , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Atlas como Assunto , Criança , Probabilidade , Vias Neurais/fisiologia
3.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37987000

RESUMO

Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.

4.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077010

RESUMO

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

5.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961586

RESUMO

Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aß PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.

6.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873167

RESUMO

Structural connections (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to structural connections may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 minutes of diffusion-weighted MRI for SC and 360 minutes of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas. SIGNIFICANCE STATEMENT: Structural connections between distant regions of the human brain support networked function that enables cognition and behavior. Improving our understanding of how structure enables function could allow better insight into how brain disconnection injuries impair brain function.Previous work using neuroimaging suggested that structure-function relationships vary systematically across the brain, with structure better explaining function in basic visual/motor areas than in higher-order areas. However, this work was conducted in group-averaged data, which may obscure details of individual-specific structure-function relationships.Using individual-specific densely sampled neuroimaging data, we found that in addition to visual/motor regions, structure strongly predicts function in specific circuits of the higher-order cingulate gyrus. The cingulate's structure-function relationship suggests that its organization may be unique among higher-order cortical regions.

7.
Alzheimers Dement ; 19(10): 4488-4497, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563879

RESUMO

INTRODUCTION: Vascular damage in Alzheimer's disease (AD) has shown conflicting findings particularly when analyzing longitudinal data. We introduce white matter hyperintensity (WMH) longitudinal morphometric analysis (WLMA) that quantifies WMH expansion as the distance from lesion voxels to a region of interest boundary. METHODS: WMH segmentation maps were derived from 270 longitudinal fluid-attenuated inversion recovery (FLAIR) ADNI images. WLMA was performed on five data-driven WMH patterns with distinct spatial distributions. Amyloid accumulation was evaluated with WMH expansion across the five WMH patterns. RESULTS: The preclinical group had significantly greater expansion in the posterior ventricular WM compared to controls. Amyloid significantly associated with frontal WMH expansion primarily within AD individuals. WLMA outperformed WMH volume changes for classifying AD from controls primarily in periventricular and posterior WMH. DISCUSSION: These data support the concept that localized WMH expansion continues to proliferate with amyloid accumulation throughout the entirety of the disease in distinct spatial locations.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética
8.
J Infect Dis ; 228(6): 751-758, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37228129

RESUMO

BACKGROUND: This study examined the effects of human immunodeficiency virus (HIV) on resting state functional connectivity (RSFC) in a large cohort of people with HIV (PWH) and healthy controls without HIV (PWoH). Within PWH analyses focused on the effects of viral suppression and cognitive impairment on RSFC. METHODS: A total of 316 PWH on stable combination antiretroviral therapy and 209 demographically matched PWoH were scanned at a single institution. Effects of the virus were examined by grouping PWH by detectable (viral load > 20 copies/mL; VLD) and undetectable (VLU) viral loads and as being cognitively impaired (CI) (Global Deficit Score ≥ 0.5) or cognitively normal (CN). Regression analysis, object oriented data analysis, and spring embedded graph models were applied to RSFC measures from 298 established brain regions of interest comprising 13 brain networks to examine group differences. RESULTS: No significant RSFC differences were observed between PWH and PWoH. Within PWH, there were no significant differences in RSFC between VLD and VLU subgroups and CI and CN subgroups. CONCLUSIONS: There were no significant effects of HIV on RSFC in our relatively large cohort of PWH and PWoH. Future studies could increase the sample size and combine with other imaging modalities.


Assuntos
Infecções por HIV , HIV , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
9.
Neuroimage ; 260: 119476, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842100

RESUMO

Recent work identified single time points ("events") of high regional cofluctuation in functional Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation time points. This suggested that events might be a discrete, temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network information differences between time points are driven by sampling variability on a constant, static, noisy signal. Using a combination of real and simulated data, we examined the relationship between cofluctuation and network structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we show that events are not discrete - there is a gradually increasing relationship between network structure and cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points can capture network structure about as well as events, largely because of their temporal spacing. Together, these results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that events arise from a single static, but noisy, FC structure.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
10.
Neuroimage ; 254: 119138, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339687

RESUMO

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Algoritmos , Teorema de Bayes , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Reprodutibilidade dos Testes
11.
Neuroimage ; 237: 118164, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000397

RESUMO

Many recent developments surrounding the functional network organization of the human brain have focused on data that have been averaged across groups of individuals. While such group-level approaches have shed considerable light on the brain's large-scale distributed systems, they conceal individual differences in network organization, which recent work has demonstrated to be common and widespread. This individual variability produces noise in group analyses, which may average together regions that are part of different functional systems across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for individual-level mapping within studies. Here our goal was to leverage information about individual-level brain organization to probabilistically map common functional systems and identify locations of high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts of data. All networks show "core" (high-probability) regions, but differ from one another in the extent of their higher-variability components. These patterns replicate well across four datasets with different participants and scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together with a tool for querying the network membership probabilities associated with any given cortical location. These quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus to their own fMRI studies, improving inferences about systems and their functional specializations.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Individualidade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Probabilidade
12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753484

RESUMO

Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.


Assuntos
Giro do Cíngulo/fisiologia , Plasticidade Neuronal/fisiologia , Descanso/fisiologia , Adulto , Mapeamento Encefálico , Função Executiva/fisiologia , Feminino , Giro do Cíngulo/citologia , Giro do Cíngulo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia
13.
Mol Autism ; 11(1): 82, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081838

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is characterized by high population-level heritability and a three-to-one male-to-female ratio that occurs independent of sex linkage. Prior research in a mixed-sex pediatric sample identified neural signatures of familial risk elicited by passive viewing of point light motion displays, suggesting the possibility that both resilience and risk of autism might be associated with brain responses to biological motion. To confirm a relationship between these signatures and inherited risk of autism, we tested them in families enriched for genetic loading through undiagnosed ("carrier") females. METHODS: Using functional magnetic resonance imaging, we examined brain responses to passive viewing of point light displays-depicting biological versus non-biological motion-in a sample of undiagnosed adult females enriched for inherited susceptibility to ASD on the basis of affectation in their respective family pedigrees. Brain responses in carrier females were compared to responses in age-, SRS-, and IQ-matched non-carrier-females-i.e., females unrelated to individuals with ASD. We conducted a hypothesis-driven analysis focused on previously published regions of interest as well as exploratory, brain-wide analyses designed to characterize more fully the rich responses to this paradigm. RESULTS: We observed robust responses to biological motion. Notwithstanding, the 12 regions implicated by prior research did not exhibit the hypothesized interaction between group (carriers vs. controls) and point light displays (biological vs. non-biological motion). Exploratory, brain-wide analyses identified this interaction in three novel regions. Post hoc analyses additionally revealed significant variations in the time course of brain activation in 20 regions spanning occipital and temporal cortex, indicating group differences in response to point light displays (irrespective of the nature of motion) for exploration in future studies. LIMITATIONS: We were unable to successfully eye-track all participants, which prevented us from being able to control for potential differences in eye gaze position. CONCLUSIONS: These methods confirmed pronounced neural signatures that differentiate brain responses to biological and scrambled motion. Our sample of undiagnosed females enriched for family genetic loading enabled discovery of numerous contrasts between carriers and non-carriers of risk of ASD that may index variations in visual attention and motion processing related to genetic susceptibility and inform our understanding of mechanisms incurred by inherited liability for ASD.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Predisposição Genética para Doença , Adulto , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
14.
Neurology ; 95(16): e2246-e2258, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913023

RESUMO

OBJECTIVE: To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls. METHODS: Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences. RESULTS: Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups. CONCLUSION: Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.


Assuntos
Encéfalo/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia
15.
Neuron ; 107(3): 580-589.e6, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32778224

RESUMO

To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor system, while internal connectivity within the disused sub-circuit was maintained. Functional disconnection was evident within 48 h, progressed throughout the cast period, and reversed after cast removal. During the cast period, large, spontaneous pulses of activity propagated through the disused somatomotor sub-circuit. The adult brain seems to rely on regular use to maintain its functional architecture. Disuse-driven spontaneous activity pulses may help preserve functionally disconnected sub-circuits.


Assuntos
Córtex Motor/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Restrição Física , Atividades Cotidianas , Moldes Cirúrgicos , Feminino , Lateralidade Funcional , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Força Muscular/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Extremidade Superior
16.
Cereb Cortex ; 30(10): 5544-5559, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494823

RESUMO

This article advances two parallel lines of argument about resting-state functional magnetic resonance imaging (fMRI) signals, one empirical and one conceptual. The empirical line creates a four-part organization of the text: (1) head motion and respiration commonly cause distinct, major, unwanted influences (artifacts) in fMRI signals; (2) head motion and respiratory changes are, confoundingly, both related to psychological and clinical and biological variables of interest; (3) many fMRI denoising strategies fail to identify and remove one or the other kind of artifact; and (4) unremoved artifact, due to correlations of artifacts with variables of interest, renders studies susceptible to identifying variance of noninterest as variance of interest. Arising from these empirical observations is a conceptual argument: that an event-related approach to task-free scans, targeting common behaviors during scanning, enables fundamental distinctions among the kinds of signals present in the data, information which is vital to understanding the effects of denoising procedures. This event-related perspective permits statements like "Event X is associated with signals A, B, and C, each with particular spatial, temporal, and signal decay properties". Denoising approaches can then be tailored, via performance in known events, to permit or suppress certain kinds of signals based on their desirability.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Potenciais Evocados , Imageamento por Ressonância Magnética , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador
17.
Neuroimage ; 217: 116866, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325210

RESUMO

Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., 'motion' parameters). However, it is increasingly recognized that respiration introduces factitious head motion via perturbations of the main (B0) field. This effect appears as higher-frequency fluctuations in the motion parameters (>0.1 â€‹Hz, here referred to as 'HF-motion'), primarily in the phase-encoding direction. This periodicity can sometimes be obscured in standard single-band fMRI (TR 2.0-2.5 â€‹s) due to aliasing. Here we examined (1) how prevalent HF-motion effects are in seven single-band datasets with TR from 2.0 to 2.5 â€‹s and (2) how HF-motion affects functional connectivity. We demonstrate that HF-motion is more common in older adults, those with higher body mass index, and those with lower cardiorespiratory fitness. We propose a low-pass filtering approach to remove the contamination of high frequency effects from motion summary measures, such as framewise displacement (FD). We demonstrate that in most datasets this filtering approach saves a substantial amount of data from FD-based frame censoring, while at the same time reducing motion biases in functional connectivity measures. These findings suggest that filtering motion parameters is an effective way to improve the fidelity of head motion estimates, even in single band datasets. Particularly large data savings may accrue in datasets acquired in older and less fit participants.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Vias Neurais/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Índice de Massa Corporal , Mapeamento Encefálico , Criança , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Oxigênio/sangue , Aptidão Física , Estudos Retrospectivos , Adulto Jovem
18.
Neuroimage ; 208: 116400, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31778819

RESUMO

Head motion represents one of the greatest technical obstacles in magnetic resonance imaging (MRI) of the human brain. Accurate detection of artifacts induced by head motion requires precise estimation of movement. However, head motion estimates may be corrupted by artifacts due to magnetic main field fluctuations generated by body motion. In the current report, we examine head motion estimation in multiband resting state functional connectivity MRI (rs-fcMRI) data from the Adolescent Brain and Cognitive Development (ABCD) Study and comparison 'single-shot' datasets. We show that respirations contaminate movement estimates in functional MRI and that respiration generates apparent head motion not associated with functional MRI quality reductions. We have developed a novel approach using a band-stop filter that accurately removes these respiratory effects from motion estimates. Subsequently, we demonstrate that utilizing a band-stop filter improves post-processing fMRI data quality. Lastly, we demonstrate the real-time implementation of motion estimate filtering in our FIRMM (Framewise Integrated Real-Time MRI Monitoring) software package.


Assuntos
Artefatos , Neuroimagem Funcional/normas , Movimentos da Cabeça , Imageamento por Ressonância Magnética/normas , Respiração , Adolescente , Criança , Feminino , Humanos , Masculino
19.
Proc Natl Acad Sci U S A ; 116(45): 22851-22861, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31611415

RESUMO

Resting-state functional magnetic resonance imaging (fMRI) has provided converging descriptions of group-level functional brain organization. Recent work has revealed that functional networks identified in individuals contain local features that differ from the group-level description. We define these features as network variants. Building on these studies, we ask whether distributions of network variants reflect stable, trait-like differences in brain organization. Across several datasets of highly-sampled individuals we show that 1) variants are highly stable within individuals, 2) variants are found in characteristic locations and associate with characteristic functional networks across large groups, 3) task-evoked signals in variants demonstrate a link to functional variation, and 4) individuals cluster into subgroups on the basis of variant characteristics that are related to differences in behavior. These results suggest that distributions of network variants may reflect stable, trait-like, functionally relevant individual differences in functional brain organization.


Assuntos
Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia
20.
Hum Brain Mapp ; 40(2): 361-376, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251766

RESUMO

Neuroimaging studies have implicated a set of striatal and orbitofrontal cortex (OFC) regions that are commonly activated during reward processing tasks. Resting-state functional connectivity (RSFC) studies have demonstrated that the human brain is organized into several functional systems that show strong temporal coherence in the absence of goal-directed tasks. Here we use seed-based and graph-theory RSFC approaches to characterize the systems-level organization of putative reward regions of at rest. Peaks of connectivity from seed-based RSFC patterns for the nucleus accumbens (NAcc) and orbitofrontal cortex (OFC) were used to identify candidate reward regions which were merged with a previously used set of regions (Power et al., 2011). Graph-theory was then used to determine system-level membership for all regions. Several regions previously implicated in reward-processing (NAcc, lateral and medial OFC, and ventromedial prefrontal cortex) comprised a distinct, preferentially coupled system. This RSFC system is stable across a range of connectivity thresholds and shares strong overlap with meta-analyses of task-based reward studies. This reward system shares between-system connectivity with systems implicated in cognitive control and self-regulation, including the fronto-parietal, cingulo-opercular, and default systems. Differences may exist in the pathways through which control systems interact with reward system components. Whereas NAcc is functionally connected to cingulo-opercular and default systems, OFC regions show stronger connectivity with the fronto-parietal system. We propose that future work may be able to interrogate group or individual differences in connectivity profiles using the regions delineated in this work to explore potential relationships to appetitive behaviors, self-regulation failure, and addiction.


Assuntos
Conectoma , Rede Nervosa/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Autocontrole , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA